Vector fields in the presence of a contact structure
نویسنده
چکیده
We consider the Lie algebra of all vector fields on a contact manifold as a module over the Lie subalgebra of contact vector fields. This module is split into a direct sum of two submodules: the contact algebra itself and the space of tangent vector fields. We study the geometric nature of these two modules.
منابع مشابه
GROUPOID ASSOCIATED TO A SMOOTH MANIFOLD
In this paper, we introduce the structure of a groupoid associated to a vector field on a smooth manifold. We show that in the case of the $1$-dimensional manifolds, our groupoid has a smooth structure such that makes it into a Lie groupoid. Using this approach, we associated to every vector field an equivalence relation on the Lie algebra of all vector fields on the smooth...
متن کاملContact CR Submanifolds of maximal Contact CR dimension of Sasakian Space Form
In this paper, we investigate contact CR submanifolds of contact CR dimension in Sasakian space form and introduce the general structure of these submanifolds and then studying structures of this submanifols with the condition h(FX,Y)+h(X,FY)=g(FX,Y)zeta, for the normal vector field zeta, which is nonzero, and we classify these submanifolds.
متن کاملDynamic Analysis of Circular Plates in Contact with Fluid and Resting on Two-Parameter Foundations
The dynamic behaviour of a circular plate in contact with fluid and resting on two-parameter elastic foundations is of interest in the field of geotechnics, structure, highway, railway, oil and gas and mechanical engineering. In this work, the dynamic behaviour of circular plate in contact with fluid and resting on Winkler and Pasternak foundations is investigated. The coupled differential equa...
متن کاملHarmonicity and Minimality of Vector Fields on Lorentzian Lie Groups
We consider four-dimensional lie groups equipped with left-invariant Lorentzian Einstein metrics, and determine the harmonicity properties of vector fields on these spaces. In some cases, all these vector fields are critical points for the energy functional restricted to vector fields. We also classify vector fields defining harmonic maps, and calculate explicitly the energy of t...
متن کاملSome vector fields on a riemannian manifold with semi-symmetric metric connection
In the first part of this paper, some theorems are given for a Riemannian manifold with semi-symmetric metric connection. In the second part of it, some special vector fields, for example, torse-forming vector fields, recurrent vector fields and concurrent vector fields are examined in this manifold. We obtain some properties of this manifold having the vectors mentioned above.
متن کامل